MECH - 1003 Intro to Mechanical Eng Tech, 3.00 Credits

Level: Lowe

This course prepares students who are new to the mechanical engineering technology field for success at the college level. Topics covered include mechanical engineering technology as a career, problem solving techniques, right triangle geometry, dimensional analysis, significant figures, unit conversion, and data collection and analysis. Career options and opportunities and diversity and inclusion will be presented using guest speakers from industry. Students will produce professional process documentation, organized solutions to basic engineering problems, engineering diagrams, and engineering presentations. Students will also explore campus tools for academic success.

MECH - 1203 Materials Science, 3.00 Credits

Level: Lower

Applied Learning-Practicum, Course Fee \$37.00

This course is a first semester, freshman level course. It is a broad introductory study of the basic characteristics of engineering materials. The course will emphasize the selection of metals, plastics, ceramics, and composites for mechanical design purposes. The relationships of structure, material properties, and material selection to the design/manufacturing process will be emphasized. The study will be enhanced by laboratory experience where the student will study mechanical testing equipment as well as chemical, mechanical and heat treatment effects on important material properties. The course will include the study of such areas as corrosion, strength, rigidity, wear resistance, thermal expansion, elasticity and plasticity principles of the common engineering materials. The course includes the use of equipment such as mechanical testing, light microscopes, electron microscopes, metallograph, furnaces and controllers. Data interpretation is also an important emphasis. The students also have substantial preparation work for the weekly labs.

MECH - 1603 Graphics/CAD, 3.00 Credits

Level: Lower

Applied Learning-Practicum

Graphics/CAD involves the visualization, sketching, and geometric construction of mechanical components. Students will layout and create 2D working industrial drawings that adhere to industry standards. This course will illustrate CAD drawing construction techniques that implement graphical communication through the use of the alphabet of lines, orthographic projection, section views, auxiliary views and the creation of assembly and detail mechanical components. This course will also use the ASME Standard Y14.5M-1994 for Geometric Dimensioning & Tolerancing to facilitate the communication of geometry requirements for associated features on detail components and assemblies.

MECH - 1663 Manufacturing Processes, 3.00 Credits

Level: Lower Applied Learning-Practicum

The basic equipment, processes and services required to produce a product are studied. This course is designed to give the student the knowledge and vocabulary to generally comprehend the complex and inter-related design and manufacturing functions that must be accomplished to produce the end product. The processes covered include the making of iron and steel, casting, plastics production, hot and cold forming, machining, fastening, non-traditional machining, grinding, etc. Equipment covered in the lab include: lathes, grinders, milling machines, band saws, drill presses, precision measurement devices etc. As time or student experience permit, the topic of basic C.N.C. machine operations and programs may be introduced. Safety and proper manufacturing procedures will be emphasized.

MECH - 2543 Advanced CAD Applications, 3.00 Credits

Prerequisite(s): MECH 1603 with D or bette Level: Lower

Advanced CAD is a continuation of the basic drafting standards and techniques facilitated through the course pre-requisite, MECH 1603. Delving into other mechanical drafting disciplines, this course will help students develop additional skill sets required in a variety of other mechanical fields. This course will cover, but not be limited to, machine design, weldments, structural steel, process piping, and pressure vessels. The major emphasis of this course will be the creation of working industrial drawings for fabrication and or successful integration into a mechanical assembly. The following standards will be used: ASME Sec. VIII, Div. 2, Pressure Vessel Code, ASME Y14.5M-Geometric Dimensioning & Tolerancing, ASME B31: Standards of Pressure Piping, ANSI B4.1: Limits and Fits, AISC: Standard Structural Steel Construction.

MECH - 3124 HVAC Systems, 4.00 Credits

Level: Lower

Applied Learning-Other

This course introduces the student to the fundamental principles of heating, ventilation and air conditioning systems. Topics include psychrometric principles and processes, equipment selection, heating and cooling load calculations and heating system principles including forced warm air, hot water, electric and steam systems, and geothermal heating and cooling systems. Weekly laboratory experiences address topics with organized experiments and applied projects

MECH - 3203 Computer Aided Manufacturing, 3.00 Credits

Prerequisite(s): MECH 1603 with D or better

Level: Lower

This course is a study of Computer Aided Manufacturing (CAM) using software, programming languages and methods to produce Computer Numerical Control (CNC) machining programs. CAD software is used to develop detailed drawings of student projects. Laboratory exercises include programming, machine tool setup and machine operation. Communication between the student laptops and the machine tools using current communication protocol is also studied.

MECH - 3223 Mechanical Design Principles, 3.00 Credits

Prerequisite(s): MECH 4003 with D or better

Level: Lower

Applied Learning-Other

This course will emphasize the application of mechanical design for industrial machinery. The lecture material for this course will be enhanced through a laboratory experience using design techniques that include the creation of working industrial drawings, parametrically driven spreadsheet solutions of design problems, and component sizing and dimension determinations. The course will include the study of mechanical power systems such as gear trains, belt and chain drives, linkages, clutch-coupling brake components, torque transmission devices, shaft and component design calculations. The techniques of component design will also include the extensive use of online database information, standards and manufacturers specifications. At all times in this class, the design and development for manufacturability will be paramount.

MECH - 3333 Statics, 3.00 Credits

Prerequisite(s): (MATH 1054 with D or better or MATH 2043 with D or better or MATH 1063 with D or better or MATH 1084 with D or better or MATH 1024 with D or better) Level: Lowe

This course is a study of introductory mechanics through the application of the principle of statics. Students will focus on the equilibrium of particles and rigid bodies in two and three dimensions. Additional topics will include centroids, centers of gravity, and analysis of structures, friction, area and mass moments of inertia. The course will also emphasize the importance of problem-solving in statics by using algebraic and trigonometric computations.

MECH - 3334 Statics, 4.00 Credits

Prerequisite(s): (MATH 1054 with D or better or MATH 2043 with D or better or MATH 1063 with D or better or MATH 1084 with D or better) and (PHYS 1024 with D or better or PHYS 1044 with D or better or PHYS 1064 with D or better)

Level: Lower

Applied Learning-Other

This course is a study of introductory mechanics through the application of the principles of statics. Students will focus on the equilibrium of particles and rigid bodies in two and three dimensions. Additional topics will include centroids, centers of gravity, and analysis of structures, friction, area and mass moments of inertia. The course will also emphasize the importance of problem-solving in statics by using algebraic and trigonometric computations.

MECH - 3643 Manufacturing Management, 3.00 Credits Level: Lower

This course supplements the study of manufacturing processes with emphasis on techniques, processes and factors that contribute to manufacturing management decision making. Previous manufacturing process exposure is desirable but not essential. Selected topics to be discussed include: motion and time study, engineering economics, project planning and scheduling, Computer Integrated Manufacturing/Management (CIM), Just in Time manufacturing strategy, design for manufacturability, Statistical Process Control (SPC), Statistical Quality Control (SQC), and other management policies and strategies

MECH - 4003 Solid Modeling, 3.00 Credits

Level: Lower

Applied Learning-Practicum

This course is an introduction to 3D solid modeling techniques utilizing feature-based, constraint-based parametric design. This course encourages the student to visualize parts in three dimensions and have a design intent plan for each part in which they will design. The use of design intent will help in the arrangement of assemblies, parts, features, and dimensions to meet design requirements

Alfred State

MECH - 4024 Dynamics, 4.00 Credits

Prerequisite(s): (MATH 1063 with D or better or MATH 1084 with D or better) and (MECH 2603 with D or better or MECH 3113 with D or better or MECH 3334 with D or better or ENGR 3213 with D or better) or better)

Level: Lowe

The course will emphasize applications of material involving the two basic concepts of dynamics, i.e., kinematics and kinetics and will introduce the students to vibrations. The course will include the study of levers, links, slide mechanisms, scotch yoke and the principles of force, torque, velocity, acceleration, inertia and friction. The course will use the principals of Equilibrium, Work-Energy and Impulse-Momentum along with Newton's Second Law to examine a variety of problems.

MECH - 4121 Geo. Dimension and Tolerancing, 1.00 Credit

Prerequisite(s): MECH 1663 with D or better and MECH 3223 with D or better and MECH 4003 with D or better Level: Lower

Geometric Dimensioning and Tolerancing (GD&T) is a language of symbols used to describe a part's nominal geometry and the allowable tolerance for variation. Permissible variations in manufactured components are communicated between the design engineer and the manufacturer using standard GD&T symbols. These variations may relate to form, profile, radial relationship to an axis, orientation of one feature to another, or location of features. Application of all symbology and proper interpretation will be stressed.

MECH - 4124 Geo. Dimensioning&Tolerancing, 4.00 Credits

Prerequisite(s): (MECH 1603 with D or better or MECH 4003 with D or better) and MECH 3223 with D or better and MECH 1663 with D or better

This course covers Geometric Dimensioning and Tolerancing (GD&T) which is a language of symbols used to describe a part's nominal geometry and the allowable tolerance for variation. Students will examine permissible variations in manufactured components which are communicated between the design engineer and the manufacturer using standard GD&T symbols. These variations may relate to form, profile, radial relationship to an axis, orientation of one feature to another, or location of features. Application of all symbology and proper interpretation will be stressed.

MECH - 4134 Intro. to Renewable Energy, 4.00 Credits

Prerequisite(s): MATH 2043 with D or better

Level: Lower

Level: Lower

Applied Learning-Practicum

This course is a survey of current and future energy generation with a semester-long applied learning lab project. After a review of energy and power and the current state of energy generation, students will learn the fundamental renewable energy options available for power generation. The course is organized by renewable energy technology, and the basic engineering design and implementation considerations for each technology will be discussed. In the laboratory component of this course, students will produce and test a simulated, energy efficient smart home. Students will identify and specify system input and output components that are compatible with renewable energy systems. They will then install and wire the components. Finally, students will optimize the simulated smart home for energy efficiency with a programmable microcontroller.

MECH - 4204 Industrial Automation, 4.00 Credits

Prerequisite(s): MECH 4523 with D or better and (MATH 2043 with D or better or MATH 1054 with D or better or MATH 1063 with D or better or MATH 1084 with D or better)

Level: Lower

Applied Learning-Practicum

In this course, students will learn about a manufacturing process line, understanding of the basic elements underlying mechatronics systems. Students will study the details of sensors and actuators. Hands-on connections and assemblies are required. Programmable logic controllers will be programmed for the task. Electromechanical and pneumatic actuators will be used. Students will learn about the programming and networking of controllers to create sequential operations and measurement instrumentation. The course is predominantly laboratory training manufacturer's specifications and laboratory training manuals.

MECH - 4224 Mechanical Systems Design, 4.00 Credits

Prerequisite(s): MECH 3224 with D or better or MECH 3223 with D or better

Level: Lower

Applied Learning-Other

This course will emphasize the application of mechanical design for industrial machinery. The lecture material for this course will be enhanced through a laboratory experience using design techniques that include the creation of working industrial drawings, parametrically driven spreadsheet solutions of design problems, and component sizing and dimension determinations. This course will include the study of rigid coupling design and flywheels. Also covered in this class are spring design and selection, bolted and welded joint design, column support and lifting lug design. The techniques of component design will also include extensive use of online database information, standards and manufacturers' specifications, and manufacturing for assembly. At all times in this class, the design and development for manufacturability will be paramount. This class includes several applied laboratory experiences.

MECH - 4333 CAM II, 3.00 Credits

Prerequisite(s): MECH 3203 with D or better

Level: Lower

Advanced CAM is a follow-up course to MECH 3204 and MECH 3203 CAM (Computer Aided Manufacturing) and MECH 4003 (Solid Modeling). The course will introduce advanced Computer Aided Manufacturing topics such as APT (Automatically Programmed Tools) programming, additional CNC machine programming, solid modeling and Reverse Engineering Projects using a Coordinate Measurement Machine/System (CMM).

MECH - 4523 Control System Fundamentals, 3.00 Credits

Prerequisite(s): MATH 1033 with D or better or MATH 1034 with D or better or MATH 1054 with D or better or MATH 1063 with D or better or MATH 1084 with D or better or MATH 2003 with D or better or MATH 2003 with D or better or MATH 2004 with D or

Level: Lower

Applied Learning-Practicum

This course introduces students to the electronic components commonly used to monitor and control mechanical systems. Topics include principles of measurement, instrumentation, data acquisition, and control systems with an emphasis on mechanical engineering technology applications. Students build simulated control systems using switches and both traditional and solid state relays common on modern industrial machines. Safety interlock systems, delay circuits, and motor circuits are designed and wired. Lab projects allow students to experience a variety of design solutions and trouble-shoot electronic control systems.

MECH - 4554 Computer Aided Mfg Fundamntals, 4.00 Credits

Level: Lower

This course applies the skills from manufacturing processes and solid modeling to a modern production manufacturing environment. It introduces basic skills in word address programming as well as advanced computer aided manufacturing topics such as automatically programmed tool (APT) programming, computer numeric control machine programming, solid modeling and the use of computer aided design and manufacturing software. Reverse engineering projects using a coordinate measurement machine will also be performed. The course includes a final project where students design and produce a component using modern manufacturing techniques.

MECH - 4900 Directed Study, 1.00 TO 6.00 Credits

Level: Lower

A student may contract for one to six credit hours of independent study through an arrangement with an instructor who agrees to direct such a study. The student will submit a plan acceptable to the instructor and to the department chairperson. The instructor and student will confer regularly regarding the progress of the study.

MECH - 5334 Mechanics of Materials, 4.00 Credits

Prerequisite(s): (MATH 2074 with D or better or MATH 2094 with D or better) and MECH 3334 with D or better

Level: Upper

Applied Learning-Practicum, Course Fee \$15.00, Upper Level

This course is a calculus-based study of advanced concepts in Mechanics of Materials. It addresses the behavior of deformable mechanical components when subjected to tension, compression, torsion, flexure/bending or a combination of these loads. Extensive use is made of free body diagrams as well as Mohr's Circle for stress and strain. Experience is gained in the analysis of beam deflection, shafts in torsion, power, column buckling and thin walled pressure vessels. Analysis includes examination of stress concentrations, elastic and inelastic response, residual stresses, indeterminate structures and thermal effects. Superposition, singularity functions and theories of failure are studied. Laboratory experiences include traditional mechanical material testing and computer software applications.

MECH - 5900 Directed Study, 1.00 TO 6.00 Credits

Level: Upper

Upper Level

A student may contract for one to six credit hours of independent study through an arrangement with an instructor who agrees to direct such a study. The student will submit a plan acceptable to the instructor and to the department chairperson. The instructor and student will confer regularly regarding the progress of the study.

MECH - 6334 Fluid Mechanics, 4.00 Credits

Prerequisite(s): MATH 2074 with D or better or MATH 2094 with D or better

Level: Upper

Applied Learning-Practicum, Upper Level

This course is an introduction to the theory and application of continuum fluid mechanics. Fluid properties and state relations are studied. Incompressible laminar and turbulent flows are investigated using control volume and momentum and energy equations. Navier-Stokes Equations are developed. Flow rate, pipe sizing and minor losses in pipe systems are addressed. Compressible flow and gas dynamics are introduced and include topics in boundary layer theory, Mach number, stagnation properties and shock waves. Turbomachinery, pumps and turbines are included. Weekly laboratory experiences address most of the above topics with applied projects and organized experiments.

MECH - 6643 Process Engineering & Manufact, 3.00 Credits

Prerequisite(s): MECH 1663 with D or better or ELET 1142 with D or better Corequisite(s): MECH 1663 with D or better or ELET 1142 with D or better

Level: Upper

Applied Learning-Practicum, Upper Level

This course emphasizes techniques, processes, and factors that contribute to manufacturing processes and operations decision making. Selected topics to be discussed include: 6 sigma DMAIC, KAIZEN, 5S, work flow and project planning and scheduling. Computer Integrated Manufacturing/Management (CIM), Design for Manufacturing (DFM), Just In Time (JIT) manufacturing strategies, Statistical Process Control (SPC), Statistical Quality Control (SQC), and other potential management policies and strategies. Students will complete a department designated professional project.

MECH - 7114 Applied Thermodynamics, 4.00 Credits

Prerequisite(s): MATH 2074 with D or better or MATH 2094 with D or better

Level: Upper Upper Level

This course covers the basic concepts of thermodynamics including property evaluation of ideal gases and compressible substances. Theory and application of the first and second laws of thermodynamics relating to pumps, compressors, turbines, heat exchangers; power cycles-Carnot, Rankine; refrigeration cycles-vapor compression, heat pump are covered. Problem-solving skills are applied to ideal as well as actual cycles. Basic principles of energy conversion, energy conservation, efficiencies and environmental impacts are explored.

MECH - 7153 Fluid Power Systems Design, 3.00 Credits

Prerequisite(s): (MECH 4523 with D or better or ELET 4143 with D or better or ELET 6143 with D or better) and (MECH 2603 with D or better or MECH 3113 with D or better or MECH 3334 with D or better)

Level: Upper

Applied Learning-Practicum, Upper Level

This is an upper level design course for all aspects of fluid power systems. Both hydraulic and pneumatic systems are covered. Topics covered in this class include pneumatic circuits, hydraulic power systems, hydrostatic transmissions, and electro-hydraulic control systems. Emphasis will be placed on system design and hydraulic and pneumatic component specification. The course prepares students to sit for the Hydraulic Specialist industry certification exam hosted by the National Fluid Power Society.

MECH - 7223 Energy Systems, 3.00 Credits

Prerequisite(s): MATH 2074 with D or better or MATH 2094 with D or better

Corequisite(s): MATH 2074 with D or better or MATH 2094 with D or better

Level: Upper

Upper Level

This course evaluates the concepts of energy and identifies how it relates to current and future technology. Topics include the data analysis of various types of energy systems, conversion among the several forms of energy, environmental impacts, and cost analyses. Lecture is supported by laboratory activities that may include: experiments, data collection and analysis, field trips to energy production facilities, design activities, and a final group project emphasizing principles discussed and experienced throughout the lecture and laboratory portions of the course.

MECH - 7403 Microfabrication Technology, 3.00 Credits

Prerequisite(s): (PHYS 1024 with D or better or PHYS 1044 with D or better) and (CHEM 5013 with D or better or ELET 1202 with D or better)

Level: Upper

Applied Learning-Practicum, Course Fee \$76.00, Upper Level

This course is designed to provide a valuable experience in the areas of microfabrication and MEMS (microelectromechanical systems) technology and respond to calls from industry to provide undergraduate students with more multidisciplinary experiences. The course provides a comprehensive introduction to technology of miniaturization and its application. Methods and tools to create miniature electromechanical architectures are discussed. Students will gain hands-on experience required in standard microfabrication industry and learn basics of design, fabrication, and characterization of MEMS devices. The course is ideal for junior and senior undergraduate students who are looking to perform senior projects in this field, find a career in the microfabrication industry, or pursue graduate students methods.

MECH - 7603 Heat Transfer, 3.00 Credits

Prerequisite(s): MECH 7114 with D or better and MATH 6114 with D or better and MECH 6334 with D or better

Level: Upper Upper Level

This course is a study of the physical effects of heat transfer phenomena including conduction, convection, and radiation. This will include the concepts of control volume analysis, conversion laws of mass, momentum and energy, steady state and transient conduction, laminar and turbulent convection, and phase change. A wide range of engineering problems will be presented to the students for solution using algebraic, differential and/or finite-difference methods. The heat transfer process will be directly applied in the design and analysis of thermal energy systems.