ELTR - 1156 Residential Wiring I, 6.00 Credits
Corequisite(s):
Level: Lower
This lecture course introduces a student to the theories, principles, and laws of static and dynamic electricity. Direct and alternating current circuits are studied utilizing the related trade mathematics covering topics such as Ohm's law, resistance, power, inductance, and capacitance. Major emphasis is placed on applying trade-related mathematics and analytical reasoning to troubleshooting series, parallel and compound circuits. National Electrical Code requirements and proper techniques for soldering/terminating conductors are covered. Students will learn to interpret and draw electrical schematics and wiring diagrams relating to low voltage signal circuits. The National Electrical Code and its application to residential branch circuit requirements and non-metallic wiring methods as well as correct electrical and component terminology is introduced.

ELTR - 1166 Residential Wiring Lab IA, 6.00 Credits
Corequisite(s):
Level: Lower
Students receive hands-on training in the fundamentals of low and line voltage circuit construction. An emphasis is placed on safety, craftsmanship, NEC requirements, circuit planning, and circuit layout using the appropriate cable wiring methods. The correct selection and terminology of electrical components used for assigned circuits is required. Students will also demonstrate proper troubleshooting methodology and usage of test equipment required to find faults and repair electrical circuits. Time will be spent working on actual job sites. Schematic and wiring diagrams are required for each circuit and outside of lab, report and analysis writing is necessary.

ELTR - 2156 Residential Wiring II, 6.00 Credits
Prerequisite(s): ELTR 1166 with D or better and ELTR 1166 with D or better and ELTR 1176 with D or better
Corequisite(s): ELTR 1156 with D or better * and ELTR 1166 with D or better *
Level: Lower
Understanding and interpretation of the National Electrical Code requirements for residential branch circuits are covered in detail. Practical considerations for the economic and adequate distribution of electrical energy are discussed, as well as the adequacy of circuit design. Reading and interpreting floor plan drawings as they relate to all trades is taught. Power calculations along with all N.E.C. and unit standards are covered. Security systems, grid interconnect systems, and grid connected systems with battery back-up. Areas of focus will be: safe work practices and PPE, site evaluation, system sizing, zoning restrictions, funding and layout all of the wiring required by the National Electrical Code and ensuring that it will meet the minimum adequacy requirements of a prospective homeowner. Students will then complete a spreadsheet containing all the components with their complete descriptions that are necessary to complete the Capstone project. Schematic and wiring diagrams are required for each circuit and outside of lab, report and analysis writing is necessary.

ELTR - 2166 Residential Wiring Lab II A, 6.00 Credits
Prerequisite(s): ELTR 1166 with D or better and ELTR 1166 with D or better
Corequisite(s): ELTR 1156 with D or better * and ELTR 1166 with D or better *
Level: Lower
This course will provide instruction in the applied mathematics, operation, design methodology, installation requirements, and National Electrical Code requirements for alarms and special systems.

ELTR - 2176 Residential Wiring Lab II B, 6.00 Credits
Prerequisite(s): ELTR 1156 with D or better * and ELTR 1166 with D or better *
Corequisite(s): ELTR 1156 with D or better *
Level: Lower
This lab emphasizes the application of the complete wiring system used for residential applications. Students will be required to complete several types of services, such as riser, mast, conduit and cable installations. Students will complete their freshman capstone project, which requires each student to redraw a two story residential home to scale. They will then perform the design work and layout all of the wiring required by the National Electrical Code and ensuring that it will meet the minimum adequacy requirements of a prospective homeowner. Students will then complete a spreadsheet containing all the components with their complete descriptions that are necessary to complete the Capstone project. Schematic and wiring diagrams are required for each circuit and outside of lab, report and analysis writing is necessary.

ELTR - 3156 Electrical Power Systems, 6.00 Credits
Prerequisite(s): ELTR 1156 with D or better and ELTR 1166 with D or better and ELTR 1176 with D or better and ELTR 2156 with D or better and ELTR 2166 with D or better and ELTR 2176 with D or better
Level: Lower
This course will provide instruction in the applied mathematics, circuit analysis, design, installation, distribution methods, protection, and trouble of single phase and three phase electrical power systems.

ELTR - 3306 Alarms and Special Systems, 6.00 Credits
Prerequisite(s): ELTR 1156 with D or better and ELTR 1166 with D or better and ELTR 1176 with D or better and ELTR 2156 with D or better and ELTR 2166 with D or better and ELTR 2176 with D or better
Level: Lower
This course will provide instruction in the applied mathematics, operation, design methodology, installation requirements, and National Electrical Code requirements for alarms and special systems.

ELTR - 3326 Magnetic Motor Controls, 6.00 Credits
Prerequisite(s): ELTR 1156 with D or better and ELTR 1166 with D or better and ELTR 1176 with D or better and ELTR 2156 with D or better and ELTR 2166 with D or better and ELTR 2176 with D or better
Level: Lower
This course is designed to teach foundational concepts of motors and motor control. Safe work practices and code compliant procedures will be reinforced. The student will be introduced to the basic circuits, devices and components used in their control; advanced circuits of alternating, sequencing, latching, and time delay operations of motor control will be presented. The lab will progressively lead the student to a basic understanding of individual control devices. The student will apply the basic knowledge and safety protocol towards integration into a totally automated system using magnetic and solid state controls. Throughout all projects, from basic to fully automated systems, the student will be taught troubleshooting techniques of industrial motor controls. Students will be evaluated to assess their troubleshooting skills and techniques within the lab practicums.

ELTR - 3336 Photovtlc & Wind Trbn Systm In, 6.00 Credits
Prerequisite(s): ELTR 1156 with D or better and ELTR 1166 with D or better and ELTR 1176 with D or better and ELTR 2156 with D or better and ELTR 2166 with D or better and ELTR 2176 with D or better
Level: Lower
This course presents the origin and evolution of programmable logic controllers. Special emphasis is placed on the fundamentals of Relay Ladder Logic (RLL) programming methods and the analysis of circuit operations as well as various applications of Programmable Logic Controllers (PLCs) used in modern industrial applications. Students will receive the necessary hands-on experience in lab to be able to design, program, construct, troubleshoot, and perform preventive maintenance of all components of a PLC controlled process. Students will be evaluated on troubleshooting techniques, terminations of input and output devices, and the proper maintenance of at least two different types of PLC Manufacturers.
ELTR - 3366 Ind Automtn & Process Controls, 6.00 Credits
Prerequisite(s): ELTR 1156 with D or better and ELTR 1166 with D or better and ELTR 1176 with D or better and ELTR 2156 with D or better and ELTR 2166 with D or better and ELTR 2176 with D or better
Level: Lower
Applied Learning-Practicum, Course Fee $17.00
This course involves the study of effective process control theory. A systems approach is used in an effort to understand each instrument's function within the system. The course will also examine how pneumatics, hydraulics, Servo motors, and system automation are used in industry today for the manufacturing of products. This course also involves the practice of hands-on effective process control theory. A systems approach is used in an effort to understand each instrument's function within the system.